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A B S T R A C T

Higher-order interactions are ubiquitous in the real world and play a critical role in maintaining the overall
function of complex systems. To investigate the effects of higher-order interactions on cascading dynamics,
we propose a threshold model of cascading failure on hypergraphs that describes the propagation mechanism
of failures among nodes and hyperedges. We assume that a hyperedge fails when the fraction of failed nodes
within the hyperedge exceeds a specified threshold. Additionally, once a hyperedge fails, all its remaining
nodes also fail. Through numerical simulations and theoretical analysis, we reveal a dual effect of hyperedges
on the robustness of hypergraphs: they can not only strengthen the connections among nodes and promote
the emergence of giant components in the hypergraph but also increase the risk of failure transmission
among nodes and debilitate the hypergraph. Our work provides a theoretical framework for understanding
the cascading failure of complex systems with high-order interactions and offers a useful tool for designing
robust complex systems with such interactions.
1. Introduction

Robustness refers to the resistance of a system to external attacks
or disturbances. Due to the interactions or interdependencies among
constituent units, complex systems often suffer cascading failures when
attacked [1,2]. Both modeling the cascading dynamics and boosting the
robustness of complex systems are long-term and significant scientific
problems. Over the past two decades, many cascading models have
been proposed based on network representations of complex systems,
such as single networks [3–5] or multilayer networks [6–9]. In most
existing models, pairwise interaction is used to describe the coupling
or interdependency of one node to another. However, it has been
widely recognized that interactions between units may go beyond
pairwise interactions in many biological [10], physical [11], and social
systems [12,13], such as multiple protein interactions [14], social
collaborations [15], and species interactions in ecosystems [10]. Thus,
it is of great theoretical and general significance to establish a cascading
model based on higher-order interactions to investigate the robustness
of complex systems.

Hypergraphs or hypernetworks are often used as an effective tool
to characterize higher-order interactions, where hyperedges consist
of multiple nodes [16]. This allows a set of interacting nodes to be
represented by a hyperedge [10,17]. In some technological, social, or
biological systems, a group of nodes work together to form a functional
module, where the failure of a fraction of members usually may not
destroy the function of the entire group, i.e., a hyperedge may exist
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even after some nodes fail due to the fault tolerance mechanism. This
feature is indescribable by pairwise interactions since a link has only
two nodes in simple networks, the loss of one will cause the failure
of the entire connection. In addition, the group interaction can also
describe the microscopic mechanism of a hyperedge failure caused by
its members. For example, in a power system, some power stations
or substations work in parallel, and the whole system may need to
be overhauled in the case of one or more failures. Therefore, study-
ing the cascading dynamics of complex networks under higher-order
interactions can provide a foundation for more abundant microscopic
interaction mechanisms, helping to reveal the occurrence mechanisms
of cascading failures in complex systems and the key factors affecting
their robustness.

The cascading dynamics on complex networks with pairwise in-
teractions have received extensive attention in terms of diverse mi-
croscopic propagation mechanisms of failures, and have uncovered a
series of critical phenomena and macroscopic characteristics of failure
propagation [18]. The threshold model is the most straightforward way
to describe the interaction mechanism among nodes, where a node will
fail immediately if the fraction of failed nodes in its neighbors exceeds a
threshold [1]. The threshold model has been extensively used to study
the cascading dynamics in various types of networks. One of the ad-
vantages of the threshold model is that it can capture the heterogeneity
of nodes in the network, which is an important factor that affects the
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spread of failures [19,20]. Moreover, the threshold model has been
used to study the effects of degree correlation and modularity features
of networks on the spread of failures [21], multiplexity-facilitated
cascades [22] and response heterogeneity in multiplex networks [23].
At the same time, some critical phenomena and system-level proper-
ties of failure propagation have been revealed, such as the criteria
for the global cascade [5,24], change in phase transition type [25],
and two-tiered structure in cascading process [26]. Furthermore, the
traditional threshold model has been extended to hypergraphs and
studied the condition of large cascades, where node activation occurs
if the number of active neighbors connected by hyperedges surpasses
a threshold [27]. However, previous research mainly focused on the
influence of neighboring node states on individual node states, neglect-
ing the consideration of how the states of constituent nodes impact
the functionality of system modules. To address this, we generalize the
threshold model to incorporate higher-order interactions, considering
both node-to-edge and edge-to-node processes. In this framework, a
module or hyperedge failure occurs when the fraction of failed nodes
in the hyperedge exceeds a threshold, and the failure of one hyperedge
results in the failure of the remaining nodes within the hyperedge. We
believe that the introduction of these mechanisms in hypergraphs will
bring new understanding to the mechanisms of cascading failure on
complex systems and the conditions for global failure.

Percolation theory provides a unified framework for investigating
the robustness and vulnerability of complex systems when some nodes
suffer attack or random losses initially [28,29]. Specifically, ordinary
bond(site) percolation is used to study the static connectivity of a
network after removing some nodes (edges) [30,31]. It has been found
that a network collapses as a continuous phase transition for networks
with scale-free or Poisson degree distribution, i.e., the size of the giant
component decreases to zero continuously when the initial damaged
nodes or links exceeds a critical threshold [32,33]. When the node-to-
node interaction is introduced to the percolation process, an iterative
process of nodal removal can be triggered by initial failures, and a
network disintegrates abruptly as a first-order phase transition [34],
such as k-core percolation [35], bootstrap percolation [36] and artic-
ulation point percolation [37]. Similarly, the percolation dynamics on
interdependent or multilayer networks are also iterative processes and
exhibit a first-order phase transition where the mutually connected gi-
ant component collapses abruptly at the percolation threshold [38–41].
Recently, the critical properties of percolation on networks with higher-
order interactions are attracting more and more attention, such as
percolation on hypergraphs with uniform and Poisson cardinality dis-
tribution [42], kagome hypergraph [43], multiplex hypergraphs [44],
higher-order dependent networks [45], and core percolation on hy-
pergraphs [46]. Percolation theory has been successfully applied to
various types of networks and cascading failure models. The extension
of percolation theory to hypergraphs with higher-order interactions,
combined with the threshold rule, can provide new insights into the
mechanisms of cascading failure on complex systems, and thus provides
a unified framework for investigating the behavior of complex systems
with higher-order interactions.

In this paper, we explore a threshold model of cascading failure
on hypergraphs using percolation theory. Our model assumes that if
the fraction of failed nodes in a hyperedge exceeds a threshold 𝜙,
the entire group and its residual members will be removed. Our main
finding is that the robustness of hypergraphs exhibits a non-monotonic
dependence on the average hyperdegree of nodes, with both high and
low values leading to lower robustness. We demonstrate this effect
by varying the average hyperdegree of nodes in two ways: (1) fixing
the number of hyperedges by tuning the average cardinality, and (2)
fixing the average cardinality by adjusting the number of hyperedges.
Furthermore, the threshold parameter 𝜙 plays a significant role in
determining the percolation transition types in the cascading dynamics,
with a lower value of 𝜙 resulting in a discontinuous collapse and a
2

larger value leading to a continuous disintegration. Our results suggest b
that controlling the average hyperdegree of nodes to a moderate level
could optimize the robustness of a network, and enhancing the redun-
dancy design of a hypergraph could reduce the sensitivity of nodes and
improve the resilience of the hypergraph.

2. Model

We construct a hypergraph 𝐻(𝑁,𝑀) which is composed of 𝑁 nodes
nd 𝑀 hyperedges. The number 𝑘 of hyperedges attached to a node is
efined as its hyperdegree, and it follows the hyperdegree distribution
(𝑘). Additionally, a hyperedge may have 𝑚 nodes, which is named as

ts cardinality. We assume cardinality 𝑚 conforms to the distribution
(𝑚). Each hyperedge on average contributes ⟨𝑚⟩ ≡

∑

𝑄(𝑚)𝑚 to the
otal hyperdegree of the hypergraph, and the average hyperdegree is
𝑘⟩ = 𝑀⟨𝑚⟩∕𝑁 . From a practical viewpoint of network topology, a
yperedge can be seen as a functional module. We assume that when
he fraction of failed nodes in the hyperedge reaches a threshold 𝜙,
he whole module will fail. With this dynamic mechanism, a fraction

of the initially removed nodes will trigger a cascading failure by
he iteration of two processes: (1) the first one is the node-to-edge
ailure, i.e., the malfunctions of some nodes could lead to the failure
f the whole hyperedge as well if the proportion of failed nodes in
t exceeds the threshold 𝜙; (2) the second one is the edge-to-node
ailure, i.e., when a hyperedge fails, all the remaining nodes attached
o this hyperedge will also fail. When a cascading failure process is
riggered, some hyperedges will fail first as the initially failed nodes
an be distributed in different hyperedges, which is the node-to-edge
ailure process. Once a hyperedge fails, the remaining nodes in the
yperedge will malfunction simultaneously, which is the edge-to-node
ailure process. After some iterative steps of these two processes, the
ystem will reach a stable state with no more hyperedge or node failure
See Fig. 1 for an illustration).

In our model, we use the threshold parameter 𝜙 to quantify the
olerance of a hyperedge to its failed members. When 𝜙 → 1, nodes
ithin the same hyperedge become independent, and failures cannot

pread from one hyperedge (node) to another. In contrast, 𝜙 → 0
mplies that the nodes within the same hyperedge become completely
ependent. In other words, if one node in the hyperedge fails, all nodes
n the hyperedge will definitely fail. The parameter 𝜙 determines the
everity of the cascading failure in the system.

To evaluate the structural integrity of the system, we use the final
elative size 𝑆 ≡ 𝐺∕𝑁 of the giant component in the stable state, as
n previous works [7], where 𝐺 is the number of nodes in the giant
omponent. A network with 𝑆 = 0 is considered to be completely
estroyed. To study the robustness of the hypergraph after removing
fraction 1 − 𝑝 of nodes, we focus on the threshold 𝑝𝑐 , above which

he final network can have a state of 𝑆 > 0. Generally, a small critical
oint 𝑝𝑐 suggests a more robust network, as it signifies that the giant
omponent can exist after the cascading failure process, even in the
ase of initially removing a more significant number of nodes.

. Theoretical and simulation results

.1. The final survival probability of a random node in the hypergraph

Considering a random node with hyperdegree 𝑘, it can survive at
he end of cascading failure only if all of its incident hyperedges exist.
ssuming that 𝑇 is the final survival probability of a random hyperedge
eached by a random node, the survival probability �̂� of the random
ode after the cascading process can be given by

̂ = 𝑝
∑

𝑘
𝑃 (𝑘)𝑇 𝑘. (1)

Since one hyperedge can package 𝑚 different nodes, which obey
he distribution 𝑄(𝑚), it can be inferred that a randomly chosen node

elongs to a hyperedge of cardinality 𝑚 with probability 𝑄(𝑚)𝑚∕⟨𝑚⟩.
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Fig. 1. Schematic diagram of the process of cascading failure on a hypergraph composed by 𝑁 = 10 nodes and 𝑀 = 5 hyperedges with the threshold 𝜙 = 0.4, where the enclosed
nodes form a hyperedge. (a) Two nodes 1 and 3 in the hypergraph was removed initially; (b) Since the fraction of failure nodes in hyperedge 𝐴 exceeds the threshold 𝜙, the
yperedge goes to fail and the node 2 fails as well; (c) then the fraction of total failed nodes in hyperedge 𝐵 exceeds the threshold 𝜙, and the hyperedge 𝐵 and node 4 also fails;

(d) the hyperedge 𝐶 will fail since the fraction of failed nodes exceeds the threshold 𝜙, and the system reaches a stable state in the end.
Fig. 2. The function 𝐺(�̂� ) for random hypergraphs with different values of 𝑝, where the black dots on the horizontal axis are the solutions of 𝐺(�̂� ) = 0. (a) the results for ⟨𝑚⟩ = 1.5,
𝑘⟩ = 3 and 𝜙 = 0.5; (b) the results for ⟨𝑚⟩ = 2, ⟨𝑘⟩ = 4 and 𝜙 = 0.5.
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herefore, in terms of the probability �̂� , the probability 𝑇 can be
ritten as the following form

=
∞
∑

𝑚=0

𝑄(𝑚)𝑚
⟨𝑚⟩

𝑚−1
∑

𝑛=0

(

𝑚 − 1
𝑛

)

�̂� 𝑚−𝑛−1(1 − �̂� )𝑛𝐹 (𝑚, 𝑛), (2)

where 𝑛 is the number of failed nodes and follows a binomial distribu-
tion. 𝐹 (𝑚, 𝑛) is the response function with 𝐹 (𝑚, 𝑛) = 1 if 𝑛 ≤ 𝑚𝜙 and
(𝑚, 𝑛) = 0 otherwise.

By inserting Eq. (2) into Eq. (1), we can get �̂� by solving the
following equation

𝐺(�̂� ) = 0 (3)

with the function 𝐺(�̂� ) defined as

(�̂� ) = 𝑝
∑

𝑘
𝑃 (𝑘)

{

∞
∑

𝑚=0

𝑄(𝑚)𝑚
⟨𝑚⟩

𝑚−1
∑

𝑛=0

(

𝑚 − 1
𝑛

)

�̂� 𝑚−𝑛−1(1 − �̂� )𝑛𝐹 (𝑚, 𝑛)
}𝑘

− �̂� .

(4)

In this paper, we consider a simple case where both the cardinality 𝑚
3

and the hyperdegree 𝑘 follow the Poisson distribution with average ⟨𝑚⟩
and ⟨𝑘⟩, respectively. From Fig. 2(a), we can find that the final survival
probability �̂� of a random node changes from 0 to 1 continuously in the
variation of the parameter 𝑝 from 0 to 1 for ⟨𝑚⟩ = 1.5, ⟨𝑘⟩ = 3 and 𝛼 =
0.5. In this case, the poor overall connectivity of the hypergraph limits
he propagation of the initial failures. Therefore, only by removing all
he nodes can eradicate the whole hypergraph. However, for Fig. 2(b),
e can find that the final fraction �̂� of survival nodes can change

abruptly from �̂�𝑐2 to �̂�𝑐1 at a critical point �̂�𝑐 ≈ 0.812 with the increase
of 𝑝 for ⟨𝑚⟩ = 2, ⟨𝑘⟩ = 4 and 𝛼 = 0.5. When the function curve 𝐺(�̂� )
s tangent with the horizontal axis, the discontinuous jumps occur, and
he jump point �̂�𝑐 can be obtained by solving the Eq. (5) and Eq. (3)
imultaneously

𝑑𝐺(�̂� )
𝑑�̂�

|�̂�𝑐1
= 0. (5)

In general, the value �̂�𝑐2 that the fraction of final survival nodes
jumps to is not 0 but a small value, which is because there are always
some nodes distributed in some small fragments. But as ⟨𝑚⟩ gets larger,
�̂�𝑐2 gets closer and closer to 0 (see in Fig. 3). Fig. 3 displays the
simulation and theoretical results of the final fraction �̂� of survival
nodes versus 𝑝, from which one can find the theoretical results are



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 173 (2023) 113746R.-R. Liu et al.

t

i
t
s
i
a
s
t
m
t

3

s
c
b
p

𝑄

𝑄
h
d
a
o
t
a
r
p
c
𝑅

𝑅

Fig. 3. The final fraction �̂� of survival nodes versus 𝑝 for different average cardinality ⟨𝑚⟩ with 𝜙 = 0.5, where the symbols represent simulation results, and dashed lines represent
heoretical predictions. (a) The results for the number of hyperedges 𝑀 = 𝑁 ; (b) the results for the number of hyperedges 𝑀 = 2𝑁 . In both panels, the hypergraph size is 𝑁 = 105.
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n good agreement with the simulation. Thus the correctness of our
heory can be verified. At the same time, one can also find that, for
mall average cardinalities ⟨𝑚⟩, the final fraction �̂� of surviving nodes
ncreases continuously with the variation of 𝑝 from 0 to 1, and for large
verage cardinalities ⟨𝑚⟩, �̂� first increases slowly and then increases
uddenly to a considerable value at a jump point �̂�𝑐 , which validates
he results of Fig. 2. All these results prove that a larger ⟨𝑚⟩ usually
akes the initially failed nodes spread to a wider range and thus leads

o more failed nodes in the steady state.

.2. The size of the giant component and the percolation transition

With the final survival probability �̂� of a random node, we aim to
olve the probability 𝑆 of a random node existing in the final giant
omponent. Firstly, we solve the final cardinality distribution 𝑄′(𝑚)
y the survival probability �̂� of the random node after the cascading
rocess

′(𝑚) =
∑

𝑚′≥𝑚
𝑄(𝑚′)

(

𝑚′

𝑚

)

�̂� 𝑚(1 − �̂� )𝑚
′−𝑚𝐹 (𝑚,𝑚′ − 𝑚). (6)

Based on 𝑄′(𝑚), we can get the average cardinality ⟨𝑚⟩′ =
∑

𝑚
′(𝑚)𝑚 of hyperedges in the finally steady stage. Since the nodes in a
yperedge is picked randomly, we can infer that the final hyperdegree
istribution 𝑃 ′(𝑘) of nodes follows the Poisson distribution with an
verage ⟨𝑘⟩′ = ⟨𝑚⟩′∕⟨𝑚⟩⟨𝑘⟩∕�̂� . After that, we solve the probability 𝑅
f a random hyperedge reached by a random node being connected
o the giant component and the probability �̂� of a random node in

random hyperedge being connected to the giant component. For a
andom hyperedge of cardinality 𝑚 reached by a random node, the
robability that at least one of the remaining 𝑚 − 1 nodes can be
onnected to the giant component is 1− (1− �̂�)𝑚−1, and the probability

is

=
∑

𝑚

𝑄′(𝑚)𝑚
⟨𝑚⟩′

[1 − (1 − �̂�)𝑚−1]. (7)

Analogously, the probability �̂� is

�̂� =
∑

𝑘

𝑃 ′(𝑘)𝑘
⟨𝑘⟩′

[1 − (1 −𝑅)𝑘−1]. (8)

With 𝑅 and �̂� , we can get the probability 𝑆 that a random node in
the giant component, i.e., the fraction of nodes in the giant component,
4

e

which is

𝑆 = �̂�
∑

𝑘
𝑃 ′(𝑘)[1 − (1 −𝑅)𝑘]. (9)

By imposing that the largest eigenvalue of the Jacobian matrix of
Eqs. (7) and (8) is equal to one at 𝑅 = �̂� = 0, we can find the condition
for the second-order percolation transition
⟨𝑘(𝑘 − 1)⟩′

⟨𝑘⟩′
⟨𝑚(𝑚 − 1)⟩′

⟨𝑚⟩′
= 1, (10)

here the angle brackets ⟨⋅⟩′ denote the average of a given quan-
ity computed over the final cardinality distribution 𝑄′(𝑚) or final
yperdegree distribution 𝑃 ′(𝑘).

Since the nodes in the giant component are part of the surviving
odes, the drastic change of �̂� will also lead to a sudden variation in

at the changing point �̂�𝑐 . For lower values of average cardinality
𝑚⟩, the system undergoes a single second-order percolation transition
ithout any abrupt changes. However, as ⟨𝑚⟩ increases, the system

xhibits an abrupt change in the fraction of surviving nodes �̂� , leading
o a sudden variation in the giant component 𝑆 at the transition point
�̂�𝑐 . This can result in two scenarios: a double phase transition involving
oth second-order and first-order transitions when �̂�𝑐2 is greater than
he critical value �̂�𝑐 for the emergence of the giant component, or a
ingle first-order percolation transition when �̂�𝑐2 decreases to �̂�𝑐 or
elow. Thus, the system can undergo a first-order phase transition, a
econd-order phase transition, or a double phase transition depending
n the values of ⟨𝑚⟩, ⟨𝑘⟩, and 𝜙.

Fig. 4 displays the emergence of the giant components of hyper-
raphs with the increase of 𝑝 for Poisson cardinality distribution and
oisson hyperdegree distribution. Firstly, we observe that the emerging
ays of the giant components are very different for different average

ardinality ⟨𝑚⟩. When ⟨𝑚⟩ is small, the giant component emerges con-
inuously as 𝑝 exceeds a percolation transition point 𝑝𝐼𝐼𝑐 , e.g., ⟨𝑚⟩ = 2 in
ig. 4(a) or ⟨𝑚⟩ = 1.5 (b). However, for a large ⟨𝑚⟩, the giant component
irst emerges continuously when 𝑝 reaches the percolation transition
oint 𝑝𝐼𝐼𝑐 , and then, the giant component will exhibit another sudden
ncrease at a first-order phase transition point 𝑝𝐼𝑐 , which is a double
hase transition and corresponds to the case of ⟨𝑚⟩ = 2.5 for 𝑀 = 2𝑁
r ⟨𝑚⟩ = 2 for 𝑀 = 4𝑁 shown in Fig. 4(a) or (b), respectively. As
𝑚⟩ is further increased, the percolation of the system transforms into
single first-order phase transition, and the size of the giant component
merges discontinuously at the first-order percolation transition point
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Fig. 4. The percolation transition for different average cardinality ⟨𝑚⟩ with 𝜙 = 0.7. (a–b) The final relative size 𝑆 of the giant component as a function of the node reserving
probability 𝑝 for the number of hyperedges 𝑀 = 2𝑁 and 𝑀 = 4𝑁 , respectively. The symbols represent simulation results for the system size 𝑁 = 105, and dashed lines represent
theoretical predictions; (c–d) The simulation results for susceptibility 𝜒 versus 𝑝 under the same parameter settings in (a–b) respectively. The insets of (c–d) show the asymptotic
divergence of susceptibility 𝜒 at the first-order and second-order phase transition points with the increase of the system size 𝑁 in a double logarithmic scale when the system
undergoes a double phase transition, i.e., ⟨𝑚⟩ = 2.5 for 𝑀 = 2𝑁 and ⟨𝑚⟩ = 2 for 𝑀 = 4𝑁 , respectively, where the squares and circles represent simulation results for the first-order
and second-order phase transition respectively, and the solid lines denote the fitting results.
𝑝𝐼𝑐 , e.g., ⟨𝑚⟩ = 3 in Fig. 4(a) or ⟨𝑚⟩ = 2.5 (b). Referring to Fig. 4(c),
the size 𝐺 of the giant component exhibits the maximal fluctuations at
a phase transition point as the susceptibility 𝜒 = [⟨𝐺2

⟩ − ⟨𝐺⟩

2]∕⟨𝐺⟩

diverges at the critical point as 𝑁 tends to infinity. Hence, we can
determine the percolation transition point via numerical simulations
by analyzing 𝜒 for a large 𝑁 . Furthermore, the double-peak structure
of 𝜒 indicates that the system undergoes a double phase transition for
the specific value of ⟨𝑚⟩. The inset of Fig. 4(c) shows the susceptibility
𝜒 as functions of the system size 𝑁 at the first-order phase transition
point 𝑝𝐼𝑐 and the second-order percolation transition point 𝑝𝐼𝐼𝑐 for the
case of double phase transition, i.e., ⟨𝑚⟩ = 2.5, 𝑀 = 2𝑁 and 𝜙 = 0.7,
which confirms the divergence of 𝜒 at the percolation transition points
when the system size 𝑁 → +∞ and the presence of double phase
transition. Similarly, Fig. 4(d) also validates the presence of double
phase transition for the parameter settings ⟨𝑚⟩ = 2, 𝑀 = 4𝑁 and
𝜙 = 0.7.

The average cardinality ⟨𝑚⟩ plays a crucial role in determining the
form of percolation transitions and the robustness of the hypergraph.
To explore the value of ⟨𝑚⟩ that can optimize the robustness of the
hypergraph and leads to the lowest percolation point for a given
combination of parameters ⟨𝑘⟩ and 𝜙, we plot the percolation transition
point 𝑝𝐼𝑐 or 𝑝𝐼𝐼𝑐 versus ⟨𝑚⟩ for a fixed number 𝑀 of hyperedges with
𝜙 = 0.5 and 𝜙 = 0.7 in Fig. 5(a) and (b), respectively. We observe
that the percolation transition point 𝑝𝐼𝑐 or 𝑝𝐼𝐼𝑐 initially decreases, and
then increases with the increase of ⟨𝑚⟩. For a small ⟨𝑚⟩ (region 𝐼𝐼𝐼),
the hypergraph is in a state of fragmentation, and the giant component
of the hypergraph does not exist even if no node is removed from the
5

hypergraph. For a larger ⟨𝑚⟩ (region 𝐼𝐼), the giant component of the
hypergraph emerges continuously when 𝑝 > 𝑝𝑐 . As ⟨𝑚⟩ increases further
(region (𝐼𝐼, 𝐼)), the system exhibits a double phase transition, where
the system percolates as a second-order phase transition firstly and then
undergoes a first-order phase transition. In the last region 𝐼 , the second-
order percolation transition disappears, and the system transforms into
a single first-order percolation transition. Furthermore, we plot the
phase transition point 𝑝𝐼𝑐 or 𝑝𝐼𝐼𝑐 versus the average hyperdegree ⟨𝑘⟩ for
a fixed average cardinality ⟨𝑚⟩ = 2 with 𝜙 = 0.5 and 𝜙 = 0.7 in Fig. 5(c)
and (d), respectively. We find that there is also a non-monotonic effect
of the percolation point 𝑝𝑐 versus the average hyperdegree ⟨𝑘⟩, and
four distinct regions: fragmentation region 𝐼𝐼𝐼 , second-order phase
transition region 𝐼𝐼 , first-order phase transition region 𝐼 , and double
phase transition region (𝐼, 𝐼𝐼). A lower ⟨𝑘⟩ or ⟨𝑚⟩ tends to correspond to
poorer connectivity, limiting the failure propagation in the network and
hindering the formation of the giant component. However, a large ⟨𝑚⟩
or ⟨𝑘⟩ leads to a well-connected hypergraph, making it more vulnerable
to failures. Therefore, a moderate ⟨𝑘⟩ or ⟨𝑚⟩ enables the hypergraph
to achieve optimal robustness, balancing the competing mechanisms of
failure propagation and connectivity.

4. Conclusion

Higher-order interactions are ubiquitous in complex systems, and
their impact on the robustness of such systems is of great importance.
In this paper, we aimed to explore the robustness of complex sys-
tems with higher-order interactions by investigating cascading failures
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Fig. 5. The percolation transition point 𝑝𝑐 (𝑝𝐼𝑐 or 𝑝𝐼𝐼𝑐 ) as functions of the average cardinality ⟨𝑚⟩ or average hyperdegree ⟨𝑘⟩. (a–b) shows the percolation transition point 𝑝𝐼𝑐 or
𝑝𝐼𝐼𝑐 versus the average cardinality ⟨𝑚⟩ with the number of hyperedges 𝑀 = 2𝑁 for 𝜙 = 0.5 and 𝜙 = 0.7, respectively; (c–d) shows the percolation transition point 𝑝𝐼𝑐 or 𝑝𝐼𝐼𝑐 versus
the average hyperdegree ⟨𝑘⟩ with ⟨𝑚⟩ = 2 for 𝜙 = 0.5 and 𝜙 = 0.7, respectively. The symbols represent simulation results obtained by locating the peak of the susceptibility 𝜒 ,
which is calculated from 100 independent realizations of the system with 𝑁 = 105 for each value of 𝑝. The blue solid lines denote the second-order percolation points predicted
by Eq. (10), and the orange solid lines denote the first-order phase transition points predicted by Eqs. (5) and (3). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
on hypergraphs. To model higher-order interactions in the cascading
process, we employed a threshold rule to account for both the node-to-
edge and edge-to-node processes, whereby the failure of some nodes
in one hyperedge triggers the malfunction of the entire hyperedge,
and the malfunction of one hyperedge leads to the failures of the
remaining nodes in the hyperedge. This novel interaction mechanism
is absent in pairwise interactions, where the failure of one node causes
the failure of the entire edge. Conversely, for higher-order interactions
involving multiple nodes, the failure of some individual nodes may not
necessarily lead to the failure of the entire group.

Our findings reveal that the cascading process can be triggered by
the removal of a fraction of randomly selected nodes, and the failures
of nodes and hyperedges occur alternately in the system, resulting in
a significant reduction in the fraction of final survival nodes and the
sizes of the giant components. Our model describes several essential
properties of realistic scenarios, including the cumulative effect in
cascading failures, the sensitivity of a node to external disturbances or
the strength of nodal interdependence of a group, and the feature of
the redundant design of functional modules or emergency management
plans in complex systems.

Moreover, we have also find that hyperedges in a hypergraph can
have both positive and negative impacts on the network’s robustness.
On the one hand, hyperedges can strengthen the connections between
nodes and promote the emergence of the giant component. On the other
hand, hyperedges can also increase the risk of failure propagation in the
network, potentially leading to its collapse if it is attacked. Although
the duality of edges exists in the threshold model of simple networks
6

with pairwise interactions [1], our findings confirm the generality of
this phenomenon in the cascading of complex systems. At the same
time, this duality also highlights the importance of carefully consid-
ering the impact of hyperedges on a hypergraph’s robustness and not
simply assuming that adding more connections will always improve its
resilience.

Our model also demonstrates that the hypergraph may collapse ei-
ther in a discontinuous or continuous manner, corresponding to a first-
or second-order percolation transition, respectively. Additionally, the
size of the giant component can suddenly increase at another first-order
phase transition point after the percolation of a hypergraph as a second-
order phase transition manner. The type of percolation transitions is
dependent on the failure threshold of hyperedge, average hyperdegree,
and average cardinality. These findings can aid in controlling the ways
of collapse by adjusting the average hyperdegree or average cardinality
of networks.

In summary, we have introduced the threshold rule to the cascading
models on hypergraphs to depict the node-to-edge failure mechanism.
Base on this model, we have also extended the theoretical framework
of percolation to the investigation of cascading failures in complex
systems with higher-order interactions. Our research shares similarities
with the work by Xu et al. [27] in the exploration of cascading on
hypergraphs by the threshold rule and the identification of dual effects
of hyperedges. However, there are some differences. We considered
both node-to-edge and edge-to-node interactions, whereas the work
by Xu et al. only focused on node activation when the proportion of
activated neighbors exceeded a threshold. Secondly, Xu et al. focused
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on the conditions for global failure occurrence triggered by the failure
of one random node [27], while our study examined the influence
of the initial fraction of failed nodes. Additionally, we reported the
presence of double-percolation transitions as the initial fraction of
failed nodes changes. Our study contributes to understanding the dy-
namics of networks with higher-order interactions and their resilience
to cascading failures. We hope that our findings, together with other
works on hypergraphs [27,44–47] and more, will contribute to the
ongoing research in this field and inspire further investigations into the
topic. However, we recognize that there is still much to learn about the
behavior of complex systems, and our model is just one step towards a
more complete understanding of this challenging problem.
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