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Abstract

In the central nervous system, oligodendrocytes (OLs) produce myelin sheaths that

provide trophic support to neuronal axons and increase the propagation speed of

action potential. OLs are constantly generated from OL precursor cells (OPCs)

throughout life span. The production of myelinating OLs consists of three canonical

stages: OPCs, newly-formed OLs (NFOs), and mature myelinating OLs. Recently,

single-cell RNA transcriptomic analyses identified a new population of oligodendrog-

lial cells, namely differentiation committed OPCs (COPs). COPs represent a critical

intermediate population between OPCs and NFOs, as revealed by specific expression

of G-protein coupled receptor 17 (GPR17). The dysregulation of COPs leads to the

remyelination failure in demyelinating diseases and impairs the replacement of lost

myelin sheaths due to aging. Hence, understanding the development of COPs and

their underlying regulatory network will be helpful in establishing new strategies for

promoting myelin repair in demyelinating diseases. This review summarizes the cur-

rent knowledge on the development and functions of COPs under both physiological

and pathological conditions. Overall, COPs function as “checkpoints” to prevent

inappropriate precocious OL differentiation and myelination through expressing dis-

tinct regulatory factors. Deepening our understanding of COPs may not only advance

our knowledge of how OL lineage progresses during development, but also open the

door to new treatments for demyelinating diseases.
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1 | INTRODUCTION

In the central nervous system (CNS), oligodendrocytes (OLs) produce

myelin sheaths that provide trophic support to neuronal axons and

increase the propagation speed of action potentials (Bergles &

Richardson, 2015). OLs are constantly generated from OL precursor

cells (OPCs) throughout life span. OPCs are distributed throughout

the CNS and characterized by the high expression of platelet-derived

growth factor-alpha receptor (PDGFRɑ) and chondroitin sulfate

proteoglycan 4 (CSPG4, also referred to as NG2) (Rivers et al., 2008;

Zhu et al., 2008). The formation of myelinating OLs is a stepwise

differentiation process consisting of three canonical stages: OPCs,

newly-formed OLs (NFOs) and mature myelinating OLs (MOLs)

(Zhang et al., 2014). Very recently, single-cell RNA sequencing

(scRNA-seq) analyses have identified multiple intermediate cell popu-

lations belonging to the OL lineage. Notably, one cluster of oligoden-

droglial cells, defined as “differentiation committed OPCs” (COPs)

was identified with specific enriched expression of G-protein coupled

receptor 17 (GPR17) (Artegiani et al., 2017; Marques et al., 2016).

COPs constitute a population of post-mitotic OPCs, but have not yet
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initiated terminal differentiation. The newly classified COPs are prob-

ably equivalent to the so-called but ill-defined “late OPCs” (Rivera

et al., 2021). Thus, the developmental trajectory of oligodendroglial

lineage cells is OPCs-COPs-NFOs-MOLs. Multiple markers for distinct

stages of OL development have been well documented (Huang et al.,

2023) (Figure 1). Although significant research has been conducted on

the characterization and function of OPCs as well as differentiated

OLs (Bergles & Richardson, 2015; Elbaz & Popko, 2019; Fernandez-

Castaneda & Gaultier, 2016), the molecular and functional features of

COPs remain to be determined.

Proper myelination is crucial for normal functions of CNS, while

demyelination impairs the integrity of myelin sheaths and disrupts

saltatory conduction (Fancy et al., 2011). Remyelination is necessary

for the restoration of proper nerve conduction after demyelination,

which involves the recruitment and proliferation of adult OPCs, as

well as their differentiation into MOLs (Franklin & Ffrench-Constant,

2008). Multiple sclerosis (MS) is an autoimmune disease causing a

chronic demyelination in the CNS (Karussis, 2014). At present, the

primary focus of MS treatment has been to prevent disease recur-

rence by modulating the immune system. Considering that remyeli-

nation is very limited in the majority of MS lesion, new approaches

to promote remyelination have been studied and are currently

underway. OPC deficiency and differentiation obstacles are major

causes of inefficient remyelination. Moreover, a significant decrease

in the number of OPCs and COPs has been reported in the aging

brain, probably due to the reduced self-renewal of OPCs (Neumann

et al., 2019; Rivera et al., 2021). Hence, understanding the devel-

opment of COPs and their underlying regulatory network will be

helpful in establishing new strategies for promoting myelin repair

in demyelinating diseases and aging. This review summarizes the

current knowledge on the development and functions of COPs

under both physiological and pathological conditions, aiming to

elucidate the regulatory network of oligodendroglial development

and search for novel therapeutic targets for the treatment of

demyelinating diseases.

2 | IDENTIFICATION OF COPS THROUGH
SINGLE-CELL RNA TRANSCRIPTOMIC
ANALYSES

A pioneering study from Ben Barres and Jianqian Wu labs has used

RNA-sequencing (RNA-seq) technology to expand the analyses of

COPs, NFOs, and MOLs in the postnatal brain (Zhang et al., 2014).

Later on, microarray analyses were employed to investigate the

expression profiles of OPCs during demyelination and remyelination

(Moyon et al., 2015). Although these bulk RNA-seq datasets of

OL-lineage cells have become very informative resources and been

extensively used by the neuroscience community, they are restricted

in quantifying the average signal of a bulk cell population. Recent

development and application of single-cell transcriptomic technolo-

gies have advanced the characterization of oligodendroglial tran-

scriptomic signatures, and proposed novel intermediate states

between OPCs and mature OLs (Artegiani et al., 2017; Marques

et al., 2016; van Bruggen et al., 2017). Marques et al., 2016 per-

formed scRNA-seq on 5072 cells of OL-lineage from 10 regions of

mouse juvenile and adult CNS. They identified COPs, an intermedi-

ate population between OPCs and NFOs. Distinct from OPCs, COPs

lack PDGFRɑ and NG2, but express Neu4 and other genes that pre-

vent OLs from undergoing differentiation (Gpr17, Sox6, and Bmp4)

(Marques et al., 2016). Furthermore, in order to characterize

oligodendroglial cells in hippocampal niches, Artegiani et al., 2017

performed a subclustering analysis. Apart from OPCs and MOLs,

they also identified a small number of COPs, characterized by

specific expression Gpr17, Bmp4, and Fyn (Artegiani et al., 2017).

Overall, COPs are OPC-like progenitor cells that express genes

responsible for maintaining the undifferentiated states. However,

they are different from OPCs, as they do not express PDGFRɑ and

NG2. Besides, COPs exhibit low levels of cell cycle markers but

express genes involved in cell migration.

In addition to the initial identification from murine single-cell

studies, the COP cluster has been identified based on scRNA-seq

F IGURE 1 Diagram of oligodendroglial development and stage-specific markers.
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analyses in the human brain (Fernandes et al., 2021; Jakel et al.,

2019). However, this finding could not be replicated by two other

groups (Lake et al., 2018; Tran et al., 2021). A recent paper discov-

ered that neuronal ambient RNA contamination might lead to mis-

interpretation and masking of rare cell types (such as COPs)

(Caglayan et al., 2022). In this study, they showed that COPs,

despite their low abundance, represent an intermediate population

between OPCs and differentiated OLs. After ambient RNA

removal, they indeed singled out the COP population in all human

brain scRNA-seq datasets and highlighted some previously unde-

scribed markers for COPs.

3 | TRANSCRIPTOMIC SIGNATURES
OF COPS

According to the scRNA-seq analyses, COPs have a transcriptomic

signature that distinguishes them from OPCs or mature OLs

(Marques et al., 2016; Tasic et al., 2016). Gene ontology analyses

demonstrated that COPs are enriched with genes involved in cell

fate determination and cell adhension. Identification of COP-

enriched genes is highly beneficial for the characterization of novel

and important functional players. Of note, Caglayan et al., 2022

found the most specific COP markers in human brains: BCAS1,

GPR17, Fyn, TNS3, SH3RE3, EPHB1, CRB1, SIRT2, and ARHGAP5.

Through comparison between murine and human scRNA-seq data-

sets, we focus on several critical factors that exhibit peak expres-

sion in COPs and participate in the regulation of OL development

and myelination (Figure 2).

3.1 | G-protein coupled receptor 17

Previous studies have demonstrated that GPR17 is an orphan recep-

tor involved in the process of OL differentiation and myelination. This

identification and cloning of GPR17 was firstly reported in human and

rat (Ciana et al., 2006). It could be activated in several cell lines in

response to uracile nucleotides and cysteinyl leukotrienes (cysLTs).

After 2 years, detailed characterization of mouse GPR17 demon-

strated its specific expression in OPCs (Lecca et al., 2008). During

development, the expression of GPR17 is restricted in OL-lineage

cells and rapidly downregulated at the peak of myelination (Chen

et al., 2009). It was later found that GPR17 is mainly expressed in the

late ramified OPCs, characterized by NG2 downregulation (Fumagalli

et al., 2011), reminiscent of the COPs. Indeed, GPR17 expression is

induced in NG2+ glia cells at the end of cell cycle and its upregulation

defines a stage when OPCs start to exit cell cycle (Boda et al., 2011).

Consistently, analysis of spinal cord development in zebrafish

indicates that GPR17 is strictly expressed in a subset of OPCs that

produce myelinating OLs, while it is virtually absent in OPCs that

never differentiate (Marisca et al., 2020). Due to these findings,

GPR17 has been recognized as an important marker to label COPs.

Studies have been performed by several groups to determine the

function of GPR17 in OL development (Capelli et al., 2020; Chen

et al., 2009; Fumagalli et al., 2011). In primary cultured OPCs, Gpr17

knockdown through specific small-interfering RNAs (siRNAs) pro-

foundly impaired their capability to produce mature OLs, implying the

potential role of GPR17 in the initiation of differentiation (Fumagalli

et al., 2011). Conversely, continuous exposure to either endogenous

or synthetic GPR17 agonist promoted OPC differentiation and

F IGURE 2 Relative expression levels of COP-enriched genes in distinct oligodendroglial populations clustered by scRNA-seq
(from Marques et al., 2016). The figure panels are retrieved from the scRNA-seq datasets (http://linnarssonlab.org/oligodendrocytes/).
VLMC, vascular and leptomeningeal cells; NFO, newly-formed oligodendrocytes; MFO, myelin-forming oligodendrocytes; MOL:

mature oligodendrocytes.
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accelerated myelination in OPC-DRG co-cultures (Capelli et al., 2020).

However, contrary to these in vitro studies, genetic analysis revealed

that GPR17 functions to prevent OPCs from maturing into OLs. Gpr17

knockout mice display an earlier onset of myelination in the spinal cord.

Consistently, transgenic mice with sustained GPR17 expression in OLs

display typical features of myelination disorders in the CNS, with

absence of myelin or reduction in myelin thickness (Chen et al., 2009).

It has been proposed that the inhibitory effects of GPR17 on OPC mat-

uration are, at least partially, due to the upregulation and nuclear trans-

location of ID2/ID4, the potent OL differentiation inhibitors (Chen

et al., 2009; Wang et al., 2001). However, a recent study demonstrated

that ID2/ID4 are not expressed in OPCs during normal CNS develop-

ment, and genetic disruption of both ID2 and ID4 has no or little effect

on OPC generation and differentiation (Huang et al., 2022). Therefore,

the precise function of GPR17 in OPC lineage progression and its

working mechanism are still somewhat controversial and remain to be

further clarified.

3.2 | Breast carcinoma amplified sequence 1

Breast carcinoma amplified sequence 1 (BCAS1) was originally identi-

fied as mRNA amplified in human cancer cell lines (Collins

et al., 1998), but recent transcriptomic and proteomic studies have

revealed its abundant expression in oligodendroglial cells (Sharma

et al., 2015; Zeisel et al., 2015; Zhang et al., 2014). Immunostaining of

the mouse brain revealed that BCAS1 is co-labeled with the pan

OL-lineage markers (Sox10, Olig1, and Olig2), but not with the OPC

marker NG2, and its expression is later downregulated in myelinating

OLs (Fard et al., 2017). Thus, BCAS1+ cells represent an intermediate

oligodendroglial cell population, segregating from OPCs and mature

OLs, indicative of COP cluster. In primary cultured OPCs, BCAS1

is expressed in majority of O4+ OLs with arborized morphology.

However, when OLs form sheets and express MBP, its expression is

reduced. In OLs generated from induced pluripotent human stem cells

(iPSCs), BCAS1 is also expressed in majority of O4+ OLs at 24 days

in vitro. At later time points of differentiation, BCAS1 is hardly

detected in MBP+ mature OLs. Together, these findings verify the

enrichment of BCAS1 in COPs during early differentiation in both

mouse and human cells (Fard et al., 2017).

The function of BCAS1 in OL development has remained

elusive, although there is evidence that BCAS1 is required for normal

myelination and brain functions in vivo. Bcas1 knockout mice exhibit

schizophrenia-like abnormal behaviors and a tendency towards

anxiety-like behaviors. Moreover, its absence results in hypomyeli-

nation and upregulation of inflammatory genes in the brain (Ishimoto

et al., 2017). At present, it is not known what causes the

schizophrenia-like symptom in Bcas1-deficient mice. It was previ-

ously proposed that a change in BCAS1 splicing is associated with

the alternative splicing of quaking (QKI), an RNA-binding protein

(Lauriat et al., 2008). A deficiency in QKI also induced myelination

defects and schizophrenia-like behaviors (Aberg et al., 2006;

Haroutunian et al., 2006; Zhao et al., 2010). Thus, BCAS1 mutation

appears to cause schizophrenia-like symptom by influencing QKI

splicing and myelin development.

3.3 | Fyn

Fyn is a non-receptor tyrosine kinase belonging to the Src family of

kinases (SFKs). The peak of Fyn expression corresponds to the peak

of myelination in the brain (Bare et al., 1993). Genetic evidences

showed that Fyn-deficient mice exhibit hypomyelination in the brain,

further confirming the role of Fyn in developmental myelination

(Umemori et al., 1994). In the past decades, the contribution of Fyn to

stimulating OPC differentiation and enhancing myelin formation has

been studied in-depth, as reviewed by Guglietti et al (Guglietti

et al., 2021). During differentiation, upon binding to OPCs, ECM

integrins interact with and activate Fyn kinase. In turn, the activated

Fyn phosphorylates RhoGTPase, increases the expression of RhoGDP,

and inactivates RhoA, allowing hyperextension of oligodendroglial

processes and promoting OL differentiation and maturation (Liang

et al., 2004; Wolf et al., 2001). In support of this, inhibition of Fyn

activity blocks morphological changes from OPCs into mature OLs

(Osterhout et al., 1999). Fyn also promotes OL maturation through inter-

acting with Tau, regulating the assembly of microtubules necessary for

the formation of OL cytoskeletons (White & Krämer-Albers, 2014).

Additionally, Fyn activity is required for the production and maintenance

of MBP through phosphorylation of MBP mRNA binding protein QKI

(Wake et al., 2011; Zhang et al., 2003). Finally, it was reported that

growth factor BDNF stimulates the phosphorylation of Fyn and activates

Erk1/2, which promotes rapid myelin growth (Peckham et al., 2016).

Given that the failure of remyelination in MS is strongly linked to defec-

tive OPC differentiation and subsequent myelination, modulation of Fyn

activity may thus represent a novel therapeutic strategy to facilitate the

differentiation and maturation of OLs.

3.4 | Nkx2.2

Homeodomain proteins are closely linked to oligodendroglial devel-

opment, ranging from the initial stage of fate specification to the late

stage of terminal differentiation and myelination. Among them,

Nkx2.2 transcription factor has been shown to be involved in both

early and late oligodendroglial development stages. Nkx2.2 plays a

critical role in the initial patterning of the ventral spinal cord by

defining the p3 progenitor domain, which is essential for the genera-

tion of V3 interneurons (Briscoe et al., 1999). Then Nkx2.2 expres-

sion is excluded from the pMN domain due to the antagonistic

actions of Pax6 to allow specification of OPCs (Sun et al., 2001; Sun

et al., 2003). Later in the spinal cord, the expression of Nkx2.2 is

upregulated in OPCs, immediately before the initiation of their

differentiation and rapidly downregulated following their differentia-

tion (Fu et al., 2002; Soula et al., 2001; Xu et al., 2000; Zhou

et al., 2001). Therefore, the expression of Nkx2.2 in COPs is strongly

associated with the onset of OL differentiation.

2502 FANG ET AL.

 10981136, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/glia.24426 by H

angzhou N
orm

al U
niversity, W

iley O
nline L

ibrary on [15/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Molecular and genetic analyses of mouse and chicken embryos

demonstrate that Nkx2.2 plays an essential role in controlling the tim-

ing of OL terminal differentiation. Conventional (Qi et al., 2001) or

conditional knockout of Nkx2.2 in OPCs (Zhu, Zhao, et al., 2014b) can

lead to a significant but transient delay of OPC maturation and myelin

gene expression, although the delayed differentiation is completely

overcome later in young adults. Conversely, conditional overexpres-

sion of Nkx2.2 in OPCs results in precocious OL differentiation,

accompanied by reduced proliferation and migration of OPCs (Zhu,

Zhao, et al., 2014b). Thus, Nkx2.2 does not appear to be an essential

factor for OL differentiation, but rather it modulates the timing of OL

differentiation during development. Additional studies suggest that

Nkx2.2 directly represses the expression of PDGFRɑ, which promotes

OPC division but inhibits its differentiation, thus controlling the timing

of OPC differentiation (Zhu, Zhao, et al., 2014b). By repressing

PDGFRɑ expression, Nkx2.2+ COPs become unresponsive to the

external mitogen PDGF-A, which prompts them to exit the cell cycle

and leads to the activation of the intrinsic differentiation program.

4 | MULTIPLE FUNCTIONS OF COPS IN
OLIGODENDROGLIAL DEVELOPMENT

4.1 | COP-related mechanisms control the timing
of OL terminal differentiation

As mentioned above, COPs represent an intermediate population

between proliferating OPCs and differentiated OLs. Notably, many

factors enriched in COPs regulate OPC differentiation and matura-

tion in a stage-specific manner. In general, these factors exhibit

peak expression in COPs, but are downregulated upon initiation of

differentiation. Disturbance of their expression frequently results in

myelination defects. However, the molecular mechanisms by which

COP-derived factors facilitate the transition between OPCs and dif-

ferentiated OLs remain elusive.

The amount of intracellular cyclic AMP (cAMP) is crucial to

assess the rate of OL differentiation (Malone et al., 2013), and is

fine-tuned by GPR17 (Fumagalli et al., 2016). A high level of cAMP

suppresses the expression of PDGFRα, thereby promoting the

expression of myelin genes (Clark Jr et al., 2002), and inhibiting the

proliferation of OPCs (Li & Wang, 2011). Consistently, endogenous

activation of GPR17 or exogenous agonist MDL29951 has been

reported to suppress OPC maturation by decreasing cAMP levels

(Hennen et al., 2013). Besides, treatment with cAMP promotes the

phosphorylation of protein kinase A (PKA) in OPCs, which subse-

quently promotes OL differentiation through downstream effector

Epac1 (Simon et al., 2016). Accordingly, overexpression of GPR17

in vitro could reduce the levels of Epac1 and impair OL differentia-

tion (Simon et al., 2016), whereas deletion of Gpr17 in vivo could

increase Epac1 expression and enhance OL differentiation (Ou

et al., 2016). Together, these results imply that GPR17 activation

reduces the level of intracellular cAMP, deactivates PKA signaling

pathway, and inhibits the expression of Epac1, leading to a block-

ade of OPC maturation (Figure 3).

On the other hand, downregulation of PDGFRɑ in COPs may con-

tribute to the initiation of the intrinsic differentiation program. PDGF

modulates the proliferation, migration and surivial of OPCs through

PDGFRɑ, the only PDGF receptor isoform expressed in OPCs

(McKinnon et al., 1990; Pringle et al., 1989). As OPCs differentiate

into mature OLs, the expression of PDGFRα is gradually reduced and

ultimately extinguished in mature OLs. Conditional ablation of

PDGFRα in OPCs can lead to precocious OPC differentiation, accom-

panied by the suppression of cell proliferation and migration, resem-

bling the phenotype observed in transgenic mice overexpressing

Nkx2.2 (Zhu, Zhao, et al., 2014b). Thus, PDGFRɑ is a negative modula-

tor of OPC maturation. In COPs, Nkx2.2 has been shown to directly

F IGURE 3 Simplified diagram of
the regulation of oligodendroglial
development by GPR17. High
expression of GPR17 in COPs is
required for the initiation of terminal
differentiation. Sustained
overexpression of GPR17 in NFOs
results in a decrease in intracellular
cAMP levels, deactivates PKA

signaling pathway, and inhibits the
expression of Epac1, leading to
blockade in OL differentiation.
Meanwhile, deactivation of PKA
signaling pathway upregulates the
expression of Xaf1, resulting in cell
apoptosis. Deactivation of PKA
signaling in OLs further inhibits the
activity of PDK1, which reduces
lactate production.
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repress the transcription of PDGFRα through its specific binding to

the upstream regulatory elements (Zhu, Zhao, et al., 2014b).

4.2 | COPs maintain intrinsic OL homeostasis
through regulating cell survival

A previous study on the developing optic nerve demonstrated that

over 50% of NFOs undergo programmed cell death, reaching a peak

shortly after their initial appearance. Excess production and subse-

quent culling of OLs serve to ensure that OL population is appropri-

ately matched to the number of axons required to be myelinated

(Burne et al., 1996; Raff et al., 1993). This hints the presence of a

homeostatic mechanism that regulates the number of OLs to meet

the demands of neural plasticity, and COPs are reported to participate

in the maintenance of this intrinsic homeostasis through regulating

the survival of NFOs. The transcription factor EB (TFEB) is another

critical transcription factor that exhibits the highest expression level in

COPs. Recently, Sun et al., 2018 demonstrated that TFEB functions

cell-autonomously to induce the apoptosis of premyelinating OLs by

activating the PUMA-Bax-Bak axis, leading to the targeted elimination

of OLs in normally unmyelinated brain regions. The loss of TFEB

causes precocious and ectopic myelination in several regions of the

murine brain (Sun et al., 2018), further confirming the importance of

COPs in OL sculpting to ensure proper myelination.

Overexpression or activation of GPR17 with MDL29951 also

inhibits the survival of OLs via promoting cell apoptosis (Ou

et al., 2016). XIAP-associated factor 1 (Xaf1) is a well-characterized

tumor suppressor involved in the apoptosis of various cell types (Zhu,

Shi, et al., 2014a). Activation of GPR17 was reproted to decrease the

level of intracellular cAMP, inhibit PKA activation and upregulate Xaf1

expression, eventually resulting in OL apoptosis. Thus, ectopic activa-

tion of GPR17-cAMP-PKA axis in OLs inhibits both the maturation

and survival of oligodendroglial lineage cells (Figure 3).

4.3 | GPR17 regulates body metabolism through
intermediate COPs

Accumulating evidences suggest that GPR17 is involved in the regula-

tion of energy homeostasis. Administration of GPR17 antagonist

Cangrelor to mice reduces food intake, while GPR17 agonist LTD

induces food intake (Ren et al., 2012). Genetics evidence showed that

both Gpr17-null and OL-specific knockout mice exhibit lean pheno-

types on a high-fat diet, demonstrating that GPR17 regulates whole-

body metabolism through COPs (Ou et al., 2019). Mechanistically, loss

of GPR17 in COPs results in activation of PKA signaling and elevated

expression of pyruvate dehydrogenase kinase 1 (PDK1), which pro-

motes lactate production (Figure 3). Elevated lactate production in

OLs enhances its transfer to nearby hypothalamic neurons, which

activates the AKT/STAT3 signaling pathways, increases synthesis of

anorexigenic POMC peptides and reduces synthesis of orexigenic

AgRP peptides, eventually inhibiting food intake (Ou et al., 2019).

This finding unveils a significant role of GPR17 in metabolic control,

where GPR17/cAMP/lactate signaling axis regulates the activity of

hypothalamic neurons to maintain energy homeostasis, raising the

possibility that modulation of this signaling might be beneficial for

treating obesity.

Recently, Marangon et al., 2022 tried to investigate how physio-

logical downregulation of GPR17 in differentiated OLs facilitates cell

metabolism through transcriptomics, metabolomics and lipidomics.

After GPR17 silencing, they found a significant increase in the

expression of mature OL markers, as well as alteration of genes

involved in glucose metabolism and lipid synthesis. Metabolomic

analysis further revealed that, after GPR17 downregulation, OLs

rewrite their metabolism and increase lactate release, which could

directly affect OL differentiation program. Concomitantly, GPR17

depletion alters the abundance of myelin-specific lipids (Marangon

et al., 2022). Thus, this study unveils a functional link between

GPR17 expression, lactate production and myelin composition.

5 | THE INVOLVEMENT AND REGULATION
OF COPS DURING REMYELINATION AND
REMYELINATION

5.1 | COPs accumulate in MS patients and respond
rapidly to brain insults

Several independent studies have been performed to confirm the

accumulation of COPs in MS patients. Chen et al., 2009 firstly

reported that the number of COPs, as identified by GPR17 expres-

sion, is markedly higher in MS patients than in healthy conditions,

despite its gradual decline along with disease progression. In human

MS lesions, the density of BCAS1+ cells is higher at the lesion border

and within the remyelination areas, but low in the core of lesion sites,

suggesting that remyelination starts at the lesion borders and COPs

are actively engaged in remyelination (Fard et al., 2017). Recently,

Angelini et al., 2021 examined the expression GPR17 in MS brain and

discovered a marked accumulation of GPR17+ COPs in the normal

appearing white matter (NAWM) of MS patients. NAWM is character-

ized by relevant and diffuse ongoing inflammation, but absence of

demyelination (Angelini et al., 2021). The abundance of COPs in

NAWM suggests that COP accumulation might not be related to

demyelination lesion, but rather to inflammatory states.

In addition to the marked accumulation of COPs in MS patients,

pathologically increased GPR17 expression has been found in several

animal models of diseases, including traumatic brain injury (Boda

et al., 2011), ischemia (Ciana et al., 2006; Lecca et al., 2008) and ALS

(Bonfanti et al., 2020). In particular, GPR17+ COPs are specifically

associated to rapid response to myelin injury, regardless of the insult

type (e.g Cuprizone-, EAE- or LPC-induced demyeliantion) (Chen

et al., 2009; Coppolino et al., 2018; Nyamoya et al., 2019; Ou

et al., 2016). Thus, COPs serve as a “reserve pool” after injury. In the

adult brain, they are maintained in an immature state as a population

of cells surveying and rapidly responding to damage.
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5.2 | The final density of COPs varies in different
models of myelin injury

The GPR17 reporter line (GPR17-iCreERT2; CAG-eGFP) has been widely

used to determine the final fate of COPs under different pathological

conditions. Vigano et al., 2016 performed acute brain injury through

stab wound in this reporter line. After challenging the cortical environ-

ment by inducing acute brain injury, there is an increase, albeit not

statistically significant, of recombined GPR17+ cells. More interest-

ingly, the majority of recombined GPR17+ COPs proceed with differ-

entiation and expression of mature OL marker genes (Vigano

et al., 2016). Thus, despite their quiescence under physiological condi-

tions, GPR17+ COPs resumed their differentiation program after

acute brain insults, further validating that COPs represent an interme-

diate progenitor pool in the brain parenchyma for a rapid and efficient

regenerative process.

Contradictorily, when Bonfanti et al., 2017 induced ischemia by

middle cerebral artery occlusion (MCAO) in GPR17 reporter mice,

they found that quiescent COPs are activated to proliferate and

migrate towards the lesion shortly after ischemia. However, the

majority of COPs are kept at a precursor state and remain undifferen-

tiated even at 8 weeks after MCAO (Bonfanti et al., 2017). Coppolino

et al., 2018 employed the GPR17 reporter line to trace the fate of

COPs in two demyelinated models, EAE- and Cuprizone-induced

models. In both models, the pool of COPs responds rapidly as an

increasing number of GPR17+ cells accumulate at the demyelinated

sites. In Cuprizone model, GPR17+ COPs differentiate into mature

OLs, which is crucial for remyelination. However, in EAE model,

GPR17+ cells are arrested at an immature state and fail to differenti-

ate into myelinating OLs (Coppolino et al., 2018). Given that EAE

model is characterized by prominent activation of immune cells and

inflammation, while Cuprizone model bypasses the autoimmune com-

ponents, it is postulated that the inflammatory environments in ische-

mia and EAE model could account for the remyelination failure

of COPs.

5.3 | Chronic inflammatory environment accounts
for the remyelination failure of COPs

As mentioned above, evidences from different demyelinating models

suggest that sustained GPR17 overexpression might be induced by

pro-inflammatory chemokines or cytokines accumulating around the

lesion sites (Coppolino et al., 2018). In support of this, the stromal-

derived factor 1 (SDF1) could specifically activate GPR17, leading to

aberrant signaling transduction (Calderon et al., 2006; Parravicini

et al., 2016). Chronic inflammation might cause aberrant GPR17 upre-

gulation in COPs, as observed in severe or chronic MS patients, and

“freeze” these cells at an immature state. Due to the differentiation

blockade and continuous inflammation, COPs are then committed to

programmed cell death (Ou et al., 2016). Thus, combinatory treat-

ments with pro-remyelination agents and anti-inflammatory drugs

may provide a new therapeutic strategy to halt disease progression

and enhance myelin recovery. Recently, Raffaele et al., 2021 investi-

gated the contribution of immune cells (microglia/macrophages) to

the response of GPR17+ COPs after ischemic stroke. They found that

microglia/macrophages exhibit a beneficial action on COPs during

early injury phase after MCAO, whereas their action becomes detri-

mental at later stages. More importantly, infusion of extracellular vesi-

cles (EVs) derived from early pro-regenerative microglia favors a pro-

resolving phenotype and rescues the dystrophic “senescent-like”
traits of resident immune cells, leading to COP differentiation and

increasing functional recovery (Raffaele et al., 2021). This exciting

finding not only advances out knowledge of the complex relationship

between immune cells and COPs under pathological conditions, but

also lays a foundation for developing EV-based strategy to promote

myelin repair.

5.4 | Modulation of GPR17 enhances
remyeliantion

Considering GPR17 overexpression in MS patients, its strong cor-

relation with inflammatory milieu and direct involvement in mye-

lin genesis and repair, GPR17 has been recognized as a promising

target for pro-myelinating therapies. In contrast to the remyelina-

tion failure upon GPR17 overexpression, Gpr17-deficient mice

exhibit an improved ability to regenerate myelin sheaths in LPC-

induced demyelinating models (Lu et al., 2018; Ou et al., 2016).

Several intracellular pathways have been found to be involved.

Ou et al., 2016 suggested inactivation of GPR17 stimulates OL

differentiation through activating cAMP/PKA/Epac1 pathway. Lu

et al., 2018 further demonstrated that the enhanced remyelina-

tion in the absence of GPR17 is correlated with activation of

Erk1/2.

Due to its localization on the extracellular membrane, GPR17

could be a suitable target for pharmacological interventions (Boda

et al., 2011; Lecca et al., 2008; Lecca et al., 2020). Recently,

Parravicini et al., 2020 proposed and validated an iterative drug

discovery pipeline through which novel putative GPR17 modula-

tors have been designed and then validated using screening para-

digms from in silico simulations to in vivo disease models. For the

first time, they found that a selective GPR17 agonist (Galinex)

is able to significantly delay the symptomatic onset of EAE

(Parravicini et al., 2020). Thus, modulation of GPR17 activity

provides a promising strategy in the prevention and treatment of

demyelinating diseases.

6 | COPS MIGHT PROMOTE ADAPTIVE
MYELINATION BY RESPONDING TO
NEURONAL ACTIVITY

Overall, much of our understanding about COPs comes from studies

on developmental myelination and pathological de/remyelination.

Of note, the possible association between COPs and adaptive
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myelination needs to be explored. Adaptive myelination is a process

by which myelination continues through adulthood in an activity-

dependent manner (Knowles et al., 2022; Mount & Monje, 2017). The

direct involvement of COPs in adaptive myelination has not been

reported. It has been found that OPCs in the adult mouse brain

respond to changes in neural activity by increasing their proliferation

and differentiation capacity (Hughes et al., 2018). Motor learning, the

gradual acquisition of a specific novel motor skill, promotes adaptive

myelination in the CNS. Xiao et al., 2016 traced OL differentiation in

adult mice during motor learning (running a wheel with unevenly

spaced rungs). Within just 2 hours of exposure to the complex wheel,

production of OLs was accelerated in the subcortical white matter,

suggesting a direct and active role of OPCs in motor learning (Xiao

et al., 2016). Thus, it is plausible that the resident OPCs as well as

COPs in the adult brain play a critical role in adaptive myelination, as

they are able to respond quickly to changes in neuronal activity and

promote myelin production accordingly. Moreover, it has been

reported that neurons could promote OL differentiation through

increasing cAMP levels of nearby OPCs (Mitew et al., 2018). As men-

tioned before, the level of cAMP is fine-tuned by GPR17 to facilitate

the transition between OPCs and mature OLs. Finally, it has been

demonstrated that increased neural activity in the visual cortex led to

changes in ECM that prompted myelination of specific axons (Hughes

et al., 2018). The ECM genes are among the most enriched genes in

COPs. Together, these findings suggest that neuronal activity may

induce changes in the composition and signaling transduction of

COPs, which in turn influences myelination patterns. It will be of inter-

est and importance in the future to investigate the functional role of

COPs in adaptive myelination.

7 | CONCLUSIONS

As mentioned above, COPs represent a critical stage of oligoden-

drogenesis during which OL-lineage cells slow down proliferation

and differentiation until they are ready to produce myelin sheaths

around axons. COPs express distinct regulatory factors that act as

“checkpoints” preventing inappropriate precocious OL differentia-

tion and myelination under the physiological conditions, and these

regulatory factors are specifically downregulated at later stages

when cells are prepared for terminal differentiation. In the past

decades, increasing studies have been performed with the aim of

determining the roles of COPs in developmental myelination and

myelin regeneration. GPR17 is identified and validated as a novel

attractive target for remyelination treatment. Notably, aberrant

GPR17 upregulation during chronic inflammation might be respon-

sible for the impaired differentiation capacity of COPs. Thus, com-

bined therapies or multimodal modulators that simultaneously

target GPR17 and immune response, may serve as an effective

strategy to promote myelin recovery and injury repair. Recent

advances in high-throughput screening of GPR17 ligands, as well as

EV-based strategy will pave the way for implementing myelin repair

and functional recovery in demyelinating diseases.
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